
Linearity 

If x1(t) ←→ X1(s) with ROC R1 and x2(t) ←→ X2(s) with ROC R2, then 

a1x1(t) +  a2x2(t) ←→ a1X1(s) +  a2X2(s) with ROC R containing R1 ∩ R2, 

where  a1  and a2 are  arbitrary complex constants . 
 

This  is  known as  the  linear ity proper ty of the  Laplace  transform. 
 

The ROC always  contains  the  intersection but could be  larger (in the  case  

that pole-zero cancella tion occurs ).  

LT LT 

LT 
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Time-Domain Shifting 

If x(t) ←→ X (s) with ROC R, then 
LT 

x(t − t0) ←→ e−st0 X (s) with ROC R, LT 

where  t0 is  an arbitrary real constant. 

This  is  known as  the  time-domain shifting proper ty of the  Laplace  

transform. 
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Laplace-Domain Shifting 
If x(t) ←→ X (s) with ROC R, then 

LT 

es0t x(t) ←→ X (s − s ) with ROC R +  Re s LT 

0 { 0},  

where  s0  is  an arbitrary complex constant. 

This  is  known as  the  Laplace-domain shifting proper ty of the  Laplace  

transform. 
 

As illus tra ted below, the  ROC R is  shifted right by Re{ s 0}.  

Im 

σmin σmax 

R 

Im 

σmin +  Re{ s 0 }  σma x +  Re{ s 0}  

R +  Re{ s 0}  
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Time-Domain/Laplace -Domain Sca ling 

If x(t) ←→ X (s) with ROC R, then 
LT 

x(at ) ←→  LT 1 s 

|a| a 
X

  (
  

\  

with ROC R1 =  aR, 

where  a is  a  nonzero real constant. 
 

This  is  known as  the  (time-domain/Laplace-domain) scaling proper ty 

of the  Laplace  transform. 
 

As illus tra ted below, the  ROC R is  scaled and possibly flipped left to right. 
Im 

σmin σmax 
Re 

R 

Im Im 

x aσmin 

aR, a >  0 

min 

aR, a <  0 
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Conjuga t ion 

If x(t) ←→ X (s) with ROC R, then 
 
 

x∗(t) ←→ X ∗(s∗) with ROC R. 
 
 

This  is  known as  the  conjugation proper ty of the  Laplace  transform. 

LT 

LT 
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Time-Domain Convolution 

If x1(t) ←→ X1(s) with ROC R1 and x2(t) ←→ X2(s) with ROC R2, then 
 
 

x1 ∗ x2(t) ←→ X1(s)X2(s) with ROC containing R1 ∩ R 2.  
 
 

This  is  known as  the  time-domain convolution proper ty of the  Laplace  

transform. 
 

The ROC always  contains  the  intersection but can be  larger than the  

intersection (if pole-zero cancella tion occurs ).  

Convolution in the  time domain becomes multiplication in the  Laplace  

domain. 
 

Consequently, it is  often much eas ier to work with LTI sys tems in the  

Laplace  domain, ra ther than the  time domain. 

LT LT 

LT 
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Time-Domain Diffe rentia t ion 

If x(t) ←→ X (s) with ROC R, then 
LT 

dx(t) 

dt 

LT ←→ sX (s) with ROC containing R. 

This  is  known as  the  time-domain differentiation proper ty of the  

Laplace  transform. 

The ROC always  contains  R but can be  larger than R (if pole-zero 

cancella tion occurs). 

Differentia tion in the  time domain becomes multiplication by s in the  

Laplace  domain. 
 

Consequently, it can often be  much eas ier to work with differentia l 

equations  in the  Laplace  domain, ra ther than the  time domain. 
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Laplace-Domain Diffe rentia t ion 

If x(t) ←→ X (s) with ROC R, then 
LT 

−tx(t) ←→ LT dX (s) 

ds 
with ROC R. 

This  is  known as  the  Laplace-domain differentiation proper ty of the  

Laplace  transform. 
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Time-Domain Integra t ion 

If x(t) ←→ X (s) with ROC R, then 
LT 

{   t 
 

 
 

−∞ 
x(τ)dτ ←→ X (s) with ROC containing R ∩ { Re{ s}  >  0} . LT 1 

s 

This  is  known as  the  time-domain integration proper ty of the  Laplace  

transform. 

The ROC always  contains  a t leas t R ∩ { Re{ s}  >  0}  but can be  larger (if 

pole-zero cancella tion occurs ).  

Integration in the  time domain becomes division by s in the  Laplace  

domain. 
 

Consequently, it is  often much eas ier to work with integral equations  in the  

Laplace  domain, ra ther than the  time domain. 
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Initia l Va lue  Theorem 

For a  function x with Laplace  transform X , if x is  causal and contains  no 

impulses or higher order singularities at the origin, then 
 
 

x(0+ ) =  lim sX (s), 
s→∞ 

 

where  x(0+ ) denotes  the  limit of x(t) as  t approaches  zero from positive  

values  of t . 
 

This  result is  known as  the  initial value theorem. 

Version: 2016-01-25 



Fina l Va lue  Theorem 

For a  function x with Laplace  transform X , if x is  causal and x(t) has  a  

finite limit as  t → ∞, then 

lim x(t) =  lim sX (s). 
t→∞ s→0 

This  result is  known as  the  final value theorem. 
 

Sometimes  the  initia l and final value  theorems are  useful for checking for 

errors  in Laplace  transform calculations. For example, if we had made a  

mistake  in computing X (s), the  values  obtained from the  initia l and final 

value  theorems would most likely disagree  with the  values  obtained directly 

from the  original express ion for x(t). 
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More  Laplace  Trans form Examples  

THIS  S LIDE  IS   INTENTIONALLY  LEFT  

BLANK. 
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Section 6.4 
 

 
 
 

Determination of Invers e  Laplace  Trans form 
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Finding Inverse  Laplace  Trans form 
Recall that the  inverse  Laplace  transform x of X is  given by 

x(t) =  
1 

2π j 

{   σ+  

j∞ σ− 

j∞ 

X (s)est ds, 

where  Re{ s}  =  σ is  in the  ROC of X . 

Unfortunately, the  above contour integration can often be  quite tedious to 

compute. 
 

Consequently, we do not usually compute  the  inverse  Laplace  transform 

directly us ing the  above equation. 
 

For ra tional functions, the  inverse  Laplace  transform can be  more  eas ily 

computed us ing partial fraction expansions. 
 

Using a  partia l fraction expansion, we can express  a  ra tional function as  a  

sum of lower-order ra tional functions  whose  inverse  Laplace  transforms can 

typically be  found in tables. 
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Section 6.5 
 

 
 
 

Laplace  Trans form and LTI Sys tems  
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